Zoning Design for Handwritten Numeral Recognition
نویسندگان
چکیده
In the field of Optical Character Recognition (OCR), zoning is used to extract topological information from patterns. In this paper zoning is considered as the result of an optimisation problem and a new technique is presented for automatic zoning. More precisely, local analysis of feature distribution based on Shannon’s entropy estimation is performed to determine “core” zones of patterns. An iterative region-growing procedure is applied on the “core” zones to determine the final zoning.
منابع مشابه
Zoning methods for handwritten character recognition: A survey
This paper presents a survey on zoning methods for handwritten character recognition. Through the analysis of the relevant literature in the field, the most valuable zoning methods are presented in terms of both topologies and membership functions. Throughout the paper, diverse zoning topologies are presented based on both static and adaptive approaches. Concerning static approaches, uniform an...
متن کاملDesign and Simulation of Handwritten Gurumukhi and Devanagri Numerals Recognition
The work presented in this paper focuses on recognition of isolated handwritten numerals in Devanagari and Gurumukhi script. The proposed work uses four feature extraction methods like Zoning density, Projection histograms, Distance profiles and Background Directional Distribution(BDD). On the basis of these four types of features we have formed 10 feature vectors using different combinations o...
متن کاملReliable Devanagri Handwritten Numeral Recognition using Multiple Classifier and Flexible Zoning Approach
A reliability evaluation system for the recognition of Devanagri Numerals is proposed in this paper. Reliability of classification is very important in applications of optical character recognition. As we know that the outliers and ambiguity may affect the performance of recognition system, a rejection measure must be there for the reliable recognition of the pattern. For each character image p...
متن کاملHandwritten Gurumukhi Character Recognition Using Convolution Neural Network
Handwritten Character Recognition (HCR) is one of the challenging processes. Automatic recognition of handwritten characters is a difficult task. In this paper, we have presented a scheme for offline handwritten Gurmukhi character recognition based on CNN classifier. The system first prepares a skeleton of the character, so that feature information about the character is extracted. CNN based ap...
متن کاملDynamic Zoning Selection for Handwritten Character Recognition
This paper presents a two-level based character recognition method in which a dynamically selection of the most promising zoning scheme for feature extraction allows us to obtain interesting results for character recognition. The first level consists of a conventional neural network and a look-up-table that is used to suggest the best zoning scheme for a given unknown character. The information...
متن کامل